TY - JOUR

T1 - The Increase in Animal Mortality Risk following Exposure to Sparsely Ionizing Radiation Is Not Linear Quadratic with Dose

AU - Haley, Benjamin M.

AU - Paunesku, Tatjana

AU - Grdina, David J.

AU - Woloschak, Gayle E.

N1 - Publisher Copyright:
© 2015 Haley et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

PY - 2015/12/1

Y1 - 2015/12/1

N2 - Introduction The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREFLSS). It was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and a limited number of animal studies. Methods and Results We argue that the linear-quadratic model does not provide appropriate support to estimate the risk of contemporary exposures. In this work, we re-estimated DDREFLSS using 15 animal studies that were not included in BEIR VII's original analysis. Acute exposure data led to a DDREFLSS estimate from 0.9 to 3.0. By contrast, data that included both acute and protracted exposures led to a DDREFLSS estimate from 4.8 to infinity. These two estimates are significantly different, violating the assumptions of the linear-quadratic model, which predicts that DDREFLSS values calculated in either way should be the same. Conclusions Therefore, we propose that future estimates of the risk of protracted exposures should be based on direct comparisons of data from acute and protracted exposures, rather than from extrapolations from a linear-quadratic model. The risk of low dose exposures may be extrapolated from these protracted estimates, though we encourage ongoing debate as to whether this is the most valid approach.We also encourage efforts to enlarge the datasets used to estimate the risk of protracted exposures by including both human and animal data, carcinogenesis outcomes, a wider range of exposures, and by making more radiobiology data publicly accessible. We believe that these steps will contribute to better estimates of the risks of contemporary radiation exposures.

AB - Introduction The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREFLSS). It was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and a limited number of animal studies. Methods and Results We argue that the linear-quadratic model does not provide appropriate support to estimate the risk of contemporary exposures. In this work, we re-estimated DDREFLSS using 15 animal studies that were not included in BEIR VII's original analysis. Acute exposure data led to a DDREFLSS estimate from 0.9 to 3.0. By contrast, data that included both acute and protracted exposures led to a DDREFLSS estimate from 4.8 to infinity. These two estimates are significantly different, violating the assumptions of the linear-quadratic model, which predicts that DDREFLSS values calculated in either way should be the same. Conclusions Therefore, we propose that future estimates of the risk of protracted exposures should be based on direct comparisons of data from acute and protracted exposures, rather than from extrapolations from a linear-quadratic model. The risk of low dose exposures may be extrapolated from these protracted estimates, though we encourage ongoing debate as to whether this is the most valid approach.We also encourage efforts to enlarge the datasets used to estimate the risk of protracted exposures by including both human and animal data, carcinogenesis outcomes, a wider range of exposures, and by making more radiobiology data publicly accessible. We believe that these steps will contribute to better estimates of the risks of contemporary radiation exposures.

UR - http://www.scopus.com/inward/record.url?scp=84956686518&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84956686518&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0140989

DO - 10.1371/journal.pone.0140989

M3 - Article

C2 - 26649569

AN - SCOPUS:84956686518

SN - 1932-6203

VL - 10

JO - PloS one

JF - PloS one

IS - 12

M1 - e0140989

ER -