TY - JOUR
T1 - The irradiation of tungsten with metallic diatomic molecular ions
T2 - atomic resolution observations of depleted zones
AU - Pramanik, Dipankar
AU - Seidman, David N.
N1 - Funding Information:
* This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-76ER03158. Addi-tional support was received from the National Science Foundation through the use of the technical facilities of the Materials Science Center at Cornell University. ** Now at the A.M.I. Corporation, Research and Develop-menk 3800 Homestead Road, Santa Clara, CA 95051, USA
PY - 1983
Y1 - 1983
N2 - Direct evidence, on an atomic scale, is presented for the enhancement of damage production per projectile ion in diatomic metallic molecular ion (dimer) irradiations of tungsten as compared to monatomic metallic ion (monomer) irradations. Irradiations were performed in situ at ≤10 K, in a field-ion microscope, employing 20 keV ag+ or W+ monomer ions and the results are compared with 40 keV W2+ or Ag2+ dimer ion bombardments; the average energy per ion was 20 keV. Firstly, in the near-surface region the depleted zones produced by the W2+ dimer ions give rise to void-like contrast effects. The W+ monomer ions do not produce this void-like damage. The existence of voids was explained employing a classical nucleation and diffusion-limited growth model which suggests that the growth can occur on a time scale of <10-10 s, if the effective diffusivity of an atom in the fully-developed collision cascade is > 30 × 10-4 cm2 s-. Secondly, by counting the number of vacancies in individual depleted zones, produced by the different ions, it was demonstrated that the number of vacancies produced per incoming ion of the dimer is 1.55 time the number of vacancies produced per monomer ion. This constitutes direct evidence for non linear (or spike) effects during the creation of collision cascades by the metallic dimer ions. Further information is presented concerning the dimensions of the depleted zones and the values of the average concentration of vacancies in depleted zones.
AB - Direct evidence, on an atomic scale, is presented for the enhancement of damage production per projectile ion in diatomic metallic molecular ion (dimer) irradiations of tungsten as compared to monatomic metallic ion (monomer) irradations. Irradiations were performed in situ at ≤10 K, in a field-ion microscope, employing 20 keV ag+ or W+ monomer ions and the results are compared with 40 keV W2+ or Ag2+ dimer ion bombardments; the average energy per ion was 20 keV. Firstly, in the near-surface region the depleted zones produced by the W2+ dimer ions give rise to void-like contrast effects. The W+ monomer ions do not produce this void-like damage. The existence of voids was explained employing a classical nucleation and diffusion-limited growth model which suggests that the growth can occur on a time scale of <10-10 s, if the effective diffusivity of an atom in the fully-developed collision cascade is > 30 × 10-4 cm2 s-. Secondly, by counting the number of vacancies in individual depleted zones, produced by the different ions, it was demonstrated that the number of vacancies produced per incoming ion of the dimer is 1.55 time the number of vacancies produced per monomer ion. This constitutes direct evidence for non linear (or spike) effects during the creation of collision cascades by the metallic dimer ions. Further information is presented concerning the dimensions of the depleted zones and the values of the average concentration of vacancies in depleted zones.
UR - http://www.scopus.com/inward/record.url?scp=0020124817&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020124817&partnerID=8YFLogxK
U2 - 10.1016/0167-5087(83)90838-4
DO - 10.1016/0167-5087(83)90838-4
M3 - Article
AN - SCOPUS:0020124817
SN - 0167-5087
VL - 209-210
SP - 453
EP - 459
JO - Nuclear Instruments and Methods In Physics Research
JF - Nuclear Instruments and Methods In Physics Research
IS - PART 1
ER -