The Kähler-Ricci flow with positive bisectional curvature

D. H. Phong, Jian Song, Jacob Sturm, Ben Weinkove*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

We show that the Kähler-Ricci flow on a manifold with positive first Chern class converges to a Kähler-Einstein metric assuming positive bisectional curvature and certain stability conditions.

Original languageEnglish (US)
Pages (from-to)651-665
Number of pages15
JournalInventiones Mathematicae
Volume173
Issue number3
DOIs
StatePublished - Sep 1 2008

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'The Kähler-Ricci flow with positive bisectional curvature'. Together they form a unique fingerprint.

Cite this