The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro

Richard Longnecker*, Cheryl L. Miller, X. Qian Miao, Blake Tomkinson, Elliott Kieff

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

94 Scopus citations

Abstract

Specifically mutated Epstein-Barr virus (EBV) recombinants which truncate latent membrane protein 2A (LMP2A) and LMP2B after 260 of 497 amino acids and after 141 of 378 amino acids, respectively, were constructed. Despite truncation before the last seven transmembrane domains and the carboxy terminus, the mutant recombinants were not altered in initiation of primary B-lymphocyte infection or growth transformation, in expression of nuclear protein 1 or 2 or LMP1, or in induction of lytic EBV replication. Cells transformed by mutant virus recombinants were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, serum requirement, or clonogenic growth in soft agar. Together with similar analyses of a mutation stopping translation of the LMP2A amino-terminal cytoplasmic domain, these results indicate that LMP2 is not required for primary B-lymphocyte infection in vitro.

Original languageEnglish (US)
Pages (from-to)2006-2013
Number of pages8
JournalJournal of virology
Volume67
Issue number4
DOIs
StatePublished - 1993

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro'. Together they form a unique fingerprint.

Cite this