Abstract
Background: Dihydroorotase (DHO) is a zinc metalloenzyme, although the number of active site zinc ions has been controversial. E. coli DHO was initially thought to have a mononuclear metal center, but the subsequent X-ray structure clearly showed two zinc ions, and β, at the catalytic site. Aquifex aeolicus DHO, is a dodecamer comprised of six DHO and six aspartate transcarbamoylase (ATC) subunits. The isolated DHO monomer, which lacks catalytic activity, has an intact -site and conserved β-site ligands, but the geometry of the second metal binding site is completely disrupted. However, the putative β-site is restored when the complex with ATC is formed and DHO activity is regained. Nevertheless, the X-ray structure of the complex revealed a single zinc ion at the active site. The structure of DHO from the pathogenic organism, S. aureus showed that it also has a single active site metal ion. Results: Zinc analysis showed that the enzyme has one zinc/DHO subunit and the addition of excess metal ion did not stimulate catalytic activity, nor alter the kinetic parameters. The metal free apoenzyme was inactive, but the full activity was restored upon the addition of one equivalent of Zn§ssup§2+§esup§ or Co§ssup§2+§esup§. Moreover, deletion of the β-site by replacing the His180 and His232 with alanine had no effect on catalysis in the presence or absence of excess zinc. The 2.2 Å structure of the double mutant confirmed that the β-site was eliminated but that the active site remained otherwise intact. Conclusions: Thus, kinetically competent A. aeolicus DHO has a mononuclear metal center. In contrast, elimination of the putative second metal binding site in amidohydrolyases with a binuclear metal center, resulted in the abolition of catalytic activity. The number of active site metal ions may be a consideration in the design of inhibitors that selectively target either the mononuclear or binuclear enzymes.
Original language | English (US) |
---|---|
Article number | 36 |
Journal | BMC Biochemistry |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Dec 9 2013 |
Funding
†This work was supported in part by NIH Grants HL57527, HL/GM47399, and GM/CA60371, NSF Grant MCB9810325, and a grant for computational biology from Wayne State University. The Advanced Laboratory for Macromolecular Crystallography at Wayne State University was supported by Grant 085P1000817 from the Michigan Economic Development Corporation and Technology Tri-Corridor. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract W-31-109-Eng-38. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U. S. DOE under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817). We wish to thank Ashoka Kandegedara (Wayne State University) for running the ICP analyses.
Keywords
- Aspartate transcarbamoylase
- CAD
- Carbamoyl phosphate synthetase
- Dihydrorotase
- Metalloenzymes
- Pyrimidine biosynthesis
- Thermophile
- Zinc ligands
ASJC Scopus subject areas
- Molecular Biology
- Biochemistry