TY - JOUR
T1 - The NIH Toolbox Cognitive Battery for intellectual disabilities
T2 - Three preliminary studies and future directions
AU - Hessl, David
AU - Sansone, Stephanie M.
AU - Berry-Kravis, Elizabeth
AU - Riley, Karen
AU - Widaman, Keith F.
AU - Abbeduto, Leonard
AU - Schneider, Andrea
AU - Coleman, Jeanine
AU - Oaklander, Dena
AU - Rhodes, Kelly C.
AU - Gershon, Richard C.
N1 - Funding Information:
This work was supported by a National Institute of Child Health and Human Development grant (R01 HD076189 to DH, KR, EBK, and RG), the MIND Institute Intellectual and Developmental Disabilities Research Center (U54 HD079125 to LA), a grant from the Fragile X Community Support Network Group of Greater Chicago through the National Fragile X Foundation (to EBK), the Office of the Dean at the UC Davis School of Medicine (to DH), and the Rush University Medical Center (Dean’s Summer Student Fellowship to DO). This publication was also made possible by grant UL1 TR000002 and linked awards TL1 TR000133, UL1 TR000153, and UL1 TR001414 from the National Center for Advancing Translational Sciences, NIH, through the Biostatistics, Epidemiology, and Research Design Unit.
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/9/6
Y1 - 2016/9/6
N2 - Background: Recent advances in understanding molecular and synaptic mechanisms of intellectual disabilities (ID) in fragile X syndrome (FXS) and Down syndrome (DS) through animal models have led to targeted controlled trials with pharmacological agents designed to normalize these underlying mechanisms and improve clinical outcomes. However, several human clinical trials have failed to demonstrate efficacy of these targeted treatments to improve surrogate behavioral endpoints. Because the ultimate index of disease modification in these disorders is amelioration of ID, the validation of cognitive measures for tracking treatment response is essential. Here, we present preliminary research to validate the National Institutes of Health Toolbox Cognitive Battery (NIH-TCB) for ID. Methods: We completed three pilot studies of patients with FXS (total n = 63; mean age 19.3 ± 8.3 years, mean mental age 5.3 ± 1.6 years), DS (n = 47; mean age 16.1 ± 6.2, mean mental age 5.4 ± 2.0), and idiopathic ID (IID; n = 16; mean age 16.1 ± 5.0, mean mental age 6.6 ± 2.3) measuring processing speed, executive function, episodic memory, word/letter reading, receptive vocabulary, and working memory using the web-based NIH-TB-CB, addressing feasibility, test-retest reliability, construct validity, ecological validity, and syndrome differences and profiles. Results: Feasibility was good to excellent (≥80 % of participants with valid scores) for above mental age 4 years for all tests except list sorting (working memory). Test-retest stability was good to excellent, and convergent validity was similar to or better than results obtained from typically developing children in the normal sample for executive function and language measures. Examination of ecological validity revealed moderate to very strong correlations between the NIH-TCB composite and adaptive behavior and full-scale IQ measures. Syndrome/group comparisons demonstrated significant deficits for the FXS and DS groups relative to IID on attention and inhibitory control, a significant reading weakness for FXS, and a receptive vocabulary weakness for DS. Conclusions: The NIH-TCB has potential for assessing important dimensions of cognition in persons with ID, and several tests may be useful for tracking response to intervention. However, more extensive psychometric studies, evaluation of the NIH-TCB's sensitivity to change, both developmentally and in the context of treatment, and perhaps establishing links to brain function in these populations, are required to determine the true utility of the battery as a set of outcome measures.
AB - Background: Recent advances in understanding molecular and synaptic mechanisms of intellectual disabilities (ID) in fragile X syndrome (FXS) and Down syndrome (DS) through animal models have led to targeted controlled trials with pharmacological agents designed to normalize these underlying mechanisms and improve clinical outcomes. However, several human clinical trials have failed to demonstrate efficacy of these targeted treatments to improve surrogate behavioral endpoints. Because the ultimate index of disease modification in these disorders is amelioration of ID, the validation of cognitive measures for tracking treatment response is essential. Here, we present preliminary research to validate the National Institutes of Health Toolbox Cognitive Battery (NIH-TCB) for ID. Methods: We completed three pilot studies of patients with FXS (total n = 63; mean age 19.3 ± 8.3 years, mean mental age 5.3 ± 1.6 years), DS (n = 47; mean age 16.1 ± 6.2, mean mental age 5.4 ± 2.0), and idiopathic ID (IID; n = 16; mean age 16.1 ± 5.0, mean mental age 6.6 ± 2.3) measuring processing speed, executive function, episodic memory, word/letter reading, receptive vocabulary, and working memory using the web-based NIH-TB-CB, addressing feasibility, test-retest reliability, construct validity, ecological validity, and syndrome differences and profiles. Results: Feasibility was good to excellent (≥80 % of participants with valid scores) for above mental age 4 years for all tests except list sorting (working memory). Test-retest stability was good to excellent, and convergent validity was similar to or better than results obtained from typically developing children in the normal sample for executive function and language measures. Examination of ecological validity revealed moderate to very strong correlations between the NIH-TCB composite and adaptive behavior and full-scale IQ measures. Syndrome/group comparisons demonstrated significant deficits for the FXS and DS groups relative to IID on attention and inhibitory control, a significant reading weakness for FXS, and a receptive vocabulary weakness for DS. Conclusions: The NIH-TCB has potential for assessing important dimensions of cognition in persons with ID, and several tests may be useful for tracking response to intervention. However, more extensive psychometric studies, evaluation of the NIH-TCB's sensitivity to change, both developmentally and in the context of treatment, and perhaps establishing links to brain function in these populations, are required to determine the true utility of the battery as a set of outcome measures.
KW - Assessment
KW - Cognition
KW - Down syndrome
KW - FMR1 gene
KW - Fragile X syndrome
KW - Outcome measures
UR - http://www.scopus.com/inward/record.url?scp=84985006737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84985006737&partnerID=8YFLogxK
U2 - 10.1186/s11689-016-9167-4
DO - 10.1186/s11689-016-9167-4
M3 - Article
C2 - 27602170
AN - SCOPUS:84985006737
SN - 1866-1947
VL - 8
JO - Journal of neurodevelopmental disorders
JF - Journal of neurodevelopmental disorders
IS - 1
M1 - 35
ER -