TY - JOUR
T1 - The parabolic Monge-Ampère equation on compact almost Hermitian manifolds
AU - Chu, Jianchun
N1 - Publisher Copyright:
© 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - We prove the long time existence and uniqueness of solutions to the parabolic Monge-Ampère equation on compact almost Hermitian manifolds. We also show that the normalization of solution converges to a smooth function in C ∞ topology as t → ∞. Up to scaling, the limit function is a solution of the Monge-Ampère equation. This gives a parabolic proof of existence of solutions to the Monge-Ampère equation on almost Hermitian manifolds.
AB - We prove the long time existence and uniqueness of solutions to the parabolic Monge-Ampère equation on compact almost Hermitian manifolds. We also show that the normalization of solution converges to a smooth function in C ∞ topology as t → ∞. Up to scaling, the limit function is a solution of the Monge-Ampère equation. This gives a parabolic proof of existence of solutions to the Monge-Ampère equation on almost Hermitian manifolds.
UR - http://www.scopus.com/inward/record.url?scp=85052644696&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052644696&partnerID=8YFLogxK
U2 - 10.1515/crelle-2018-0019
DO - 10.1515/crelle-2018-0019
M3 - Article
AN - SCOPUS:85052644696
SN - 0075-4102
VL - 2020
SP - 1
EP - 24
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
IS - 761
ER -