Abstract
Mutations in the DJ-1 gene cause early-onset autosomal recessive Parkinson's disease (PD), although the role of DJ-1 in the degeneration of dopaminergic neurons is unresolved. Here we show that the major interacting-proteins with DJ-1 in dopaminergic neuronal cells are the nuclear proteins p54nrb and pyrimidine tract-binding protein-associated splicing factor (PSF), two multifunctional regulators of transcription and RNA metabolism. PD-associated DJ-1 mutants exhibit decreased nuclear distribution and increased mitochondrial localization, resulting in diminished co-localization with co-activator p54nrb and repressor PSF. Unlike pathogenic DJ-1 mutants, wild-type DJ-1 acts to inhibit the transcriptional silencing activity of the PSF. In addition, the transcriptional silencer PSF induces neuronal apoptosis, which can be reversed by wild-type DJ-1 but to a lesser extent by PD-associated DJ-1 mutants. DJ-1-specific small interfering RNA sensitizes cells to PSF-induced apoptosis. Both DJ-1 and p54nrb block oxidative stress and mutant α-synuclein-induced cell death. Thus, DJ-1 is a neuroprotective transcriptional co-activator that may act in concert with p54nrb and PSF to regulate the expression of a neuroprotective genetic program. Mutations that impair the transcriptional co-activator function of DJ-1 render dopaminergic neurons vulnerable to apoptosis and may contribute to the pathogenesis of PD.
Original language | English (US) |
---|---|
Pages (from-to) | 1231-1241 |
Number of pages | 11 |
Journal | Human molecular genetics |
Volume | 14 |
Issue number | 9 |
DOIs | |
State | Published - May 1 2005 |
ASJC Scopus subject areas
- Molecular Biology
- Genetics
- Genetics(clinical)