Abstract
A multidimensional biofilm model is developed to simulate biofilm growth on the anode of a Microbial Fuel Cell (MFC). The biofilm is treated as a conductive material, and electrons produced during microbial growth are assumed to be transferred to the anode through a conductive biofilm matrix. Growth of Geobacter sulfurreducens is simulated using the Nernst-Monod kinetic model that was previously developed and later validated in experiments. By implementing a conduction-based biofilm model in two dimensions, we are able to explore the impact of anode density and arrangement on current production in a MFC.
Original language | English (US) |
---|---|
Pages (from-to) | 834-857 |
Number of pages | 24 |
Journal | Bulletin of Mathematical Biology |
Volume | 74 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2012 |
Keywords
- Biofilm model
- Microbial fuel cell
ASJC Scopus subject areas
- Neuroscience(all)
- Immunology
- Mathematics(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Environmental Science(all)
- Pharmacology
- Agricultural and Biological Sciences(all)
- Computational Theory and Mathematics