The reproductive phenotype of mice null for transcription factor Krüppel-like factor 13 suggests compensatory function of family member Krüppel-like factor 9 in the peri-implantation uterus

Melissa E. Heard, John Mark P Pabona, Carol Clayberger, Alan M. Krensky, Frank A. Simmen, Rosalia C M Simmen*

*Corresponding author for this work

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

The ovarian hormones estrogen and progesterone promote uterine receptivity and successful pregnancy through their cognate receptors functioning in concert with context-dependent nuclear coregulators. Previously, we showed that the transcription factor Krüppel-like factor (KLF) 9 is a progesterone receptor (PGR) coactivator in the uterus and that mice null for Klf9 exhibit subfertility and reduced progesterone sensitivity. The highly related family member KLF13 displays increased expression in uteri of pregnant and nonpregnant Klf9 null mice and similarly regulates PGR-mediated transactivation in endometrial stromal cells. However, a uterine phenotype with loss of Klf13 has not been reported. In the present study, we demonstrate that Klf13 deficiency in mice did not compromise female fertility and pregnancy outcome. Klf13 null females had litter sizes, numbers of implanting embryos, uterine morphology, and ovarian steroid hormone production comparable to those of wild-type (WT) counterparts. Further, pregnant WT and Klf13 null females at Day Postcoitum (DPC) 3.5 had similar uterine Pgr, estrogen receptor, and Wnt-signaling component transcript levels. Nuclear levels of KLF9 were higher in Klf13 null than in WT uteri at DPC 3.5, albeit whole-tissue KLF9 protein and transcript levels did not differ between genotypes. The lack of a similar induction of nuclear KLF9 levels in uteri of virgin Klf13(-/-) mice relative to WT uteri was associated with lower stromal PGR expression. In differentiating human endometrial stromal cells, coincident KLF9/KLF13 knockdown by small interfering RNA targeting reduced decidualization-associated PRL expression, whereas KLF9 and KLF13 knockdowns alone reduced transcript levels of WNT4 and BMP2, respectively. Results suggest that KLF9 and KLF13 functionally compensate in peri-implantation uterus for pregnancy success.

Original languageEnglish (US)
Article numberArticle 115
JournalBiology of reproduction
Volume87
Issue number5
DOIs
StatePublished - Nov 1 2012

Keywords

  • Female reproductive tract
  • Implantation
  • Krüppel-like factors
  • Pregnancy
  • Progesterone/progesterone receptor
  • Steroid hormone receptors

ASJC Scopus subject areas

  • Reproductive Medicine
  • Cell Biology

Fingerprint Dive into the research topics of 'The reproductive phenotype of mice null for transcription factor Krüppel-like factor 13 suggests compensatory function of family member Krüppel-like factor 9 in the peri-implantation uterus'. Together they form a unique fingerprint.

  • Cite this