The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease

Dalton James Surmeier Jr*, Jaime N Guzman-Lucero, J. Sanchez-Padilla, Paul T Schumacker

*Corresponding author for this work

Research output: Contribution to journalReview article

131 Scopus citations

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease in developed countries. The core motor symptoms are attributable to the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Why these neurons succumb in PD is not clear. One potential clue has come from the observation that the engagement of l-type Ca 2+ channels during autonomous pacemaking elevates the sensitivity of SNc DA neurons to mitochondrial toxins used to create animal models of PD, suggesting that Ca 2+ entry is a factor in their selective vulnerability. Recent work has shown that this Ca 2+ entry also elevates mitochondrial oxidant stress and that this stress is exacerbated by deletion of DJ-1, a gene associated with an early onset, recessive form of PD. Epidemiological data also support a linkage between l-type Ca 2+ channels and the risk of developing PD. This review examines the hypothesis that the primary factor driving neurodegenerative changes in PD is the metabolic stress created by Ca 2+ entry, particularly in the face of genetic or environmental factors that compromise oxidative defenses or proteostatic competence.This article is part of a Special Issue entitled: Function and Dysfunction of the Basal Ganglia.

Original languageEnglish (US)
Pages (from-to)221-231
Number of pages11
JournalNeuroscience
Volume198
DOIs
Publication statusPublished - Dec 15 2011

    Fingerprint

Keywords

  • Calcium
  • Endoplasmic reticulum
  • L-type channels
  • Mitochondrial oxidant stress
  • Pacemaking
  • Parkinson's disease

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this