The role of castration-resistant Bmi1+Sox2+ cells in driving recurrence in prostate cancer

Young A. Yoo, Rajita Vatapalli, Barbara Lysy, Hanlin Mok, Mohamed M. Desouki, Sarki A. Abdulkadir*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Background: Recurrence following androgen-deprivation therapy is associated with adverse clinical outcomes in prostate cancer, but the cellular origins and molecular mechanisms underlying this process are poorly defined. We previously identified a population of castration-resistant luminal progenitor cells expressing Bmi1 in the normal mouse prostate that can serve as a cancer cell-of-origin. Here, we investigate the potential of Bmi1-expressing tumor cells that survive castration to initiate recurrence in vivo. Methods: We employed lineage retracing in Bmi1-CreER; R26R-confetti; Ptenf/f transgenic mice to mark and follow the fate of emerging recurrent tumor clones after castration. A tissue recombination strategy was used to rescue transgenic mouse prostates by regeneration as grafts in immunodeficient hosts. We also used a small molecule Bmi1 inhibitor, PTC-209, to directly test the role of Bmi1 in recurrence. Results: Transgenic prostate tumors (n = 17) regressed upon castration but uniformly recurred within 3 months. Residual regressed tumor lesions exhibited a transient luminal-to-basal phenotypic switch andmarked cellular heterogeneity. Additionally, in these lesions, a subpopulation of Bmi1-expressing castration-resistant tumor cells overexpressed the stemcell reprogramming factor Sox2 (mean [SD] = 41.1 [3.8]%, n = 10, P < .001). Bmi1+Sox2+ cells were quiescent (BrdU+Bmi1+Sox2+ at 3.4 [1.5]% vs BrdU+Bmi1+Sox2- at 18.8 [3.4]%, n=10, P=.009), consistent with a cancer stemcell phenotype. By lineage retracing, we established that recurrence emerges from the Bmi1+ tumor cells in regressed tumors. Furthermore, treatment with the small molecule Bmi1 inhibitor PTC-209 reduced Bmi1+Sox2+ cells (6.1 [1.4]% PTC-209 vs 38.8 [2.3]% vehicle, n=10, P < .001) and potently suppressed recurrence (retraced clone size = 2.6 [0.5] PTC-209 vs 15.7 [5.9] vehicle, n = 12, P = .04). Conclusions: These results illustrate the utility of lineage retracing to define the cellular origins of recurrent prostate cancer and identify Bmi1+Sox2+ cells as a source of recurrence that could be targeted therapeutically.

Original languageEnglish (US)
Pages (from-to)311-321
Number of pages11
JournalJournal of the National Cancer Institute
Volume111
Issue number3
DOIs
StatePublished - Mar 1 2019

Funding

This work was supported by National Cancer Institute grants (R01CA167966 and R01CA123484).

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'The role of castration-resistant Bmi1+Sox2+ cells in driving recurrence in prostate cancer'. Together they form a unique fingerprint.

Cite this