The role of free radicals in asbestos-induced diseases

David W. Kamp, Philip Graceffa, William A. Pryor, Sigmund A. Weitzman*

*Corresponding author for this work

Research output: Contribution to journalReview article

360 Scopus citations

Abstract

Asbestos exposure causes pulmonary fibrosis and malignant neoplasms by mechanisms that remain uncertain. In this review, we explore the evidence supporting the hypothesis that free radicals and other reactive oxygen species (ROS) are an important mechanism by which asbestos mediates tissue damage. There appears to be at least two principal mechanisms by which asbestos can induce ROS production; one operates in cell-free systems and the other involves mediation by phagocytic cells. Asbestos and other synthetic mineral fibers can generate free radicals in cell-free systems containing atmospheric oxygen. In particular, the hydroxyl radical often appears to be involved, and the iron content of the fibers has an important role in the generation of this reactive radical. However, asbestos also appears to catalyze electron transfer reactions that do not require iron. Iron chelators either inhibit or augment asbestos-catalyzed generation of the hydroxyl radical and/or pathological changes, depending on the chelator and the nature of the asbestos sample used. The second principal mechanism for asbestos-induced ROS generation involves the activation of phagocytic cells. A variety of mineral have been shown to augment the release of reactive oxygen intermediates from phagocytic cells such as neutrophils and alveolar macrophages. The molecular mechanisms involved are unclear but may involve incomplete phagocytosis with subsequent oxidant release, stimulation of the phospholipase C pathway, and/or IgG-fragment receptor activation. Reactive oxygen species are important mediators of asbestos-induced toxicity to a number of pulmonary cells including alveolar macrophages, epithelial cells, mesothelial cells, and endothelial cells. Reactive oxygen species may contribute to the well-known synergistic effects of asbestos and cigarette smoke on the lung, and the reasons for this synergy are discussed. We conclude that there is strong evidence supporting the premise that reactive oxygen species and/or free radicals contribute to asbestos-induced and cigarette smoke/asbestos-induced lung injury and that strategies aimed at reducing the oxidant stress on pulmonary cells may attenuate the deleterious effects of asbestos.

Original languageEnglish (US)
Pages (from-to)293-315
Number of pages23
JournalFree Radical Biology and Medicine
Volume12
Issue number4
DOIs
StatePublished - 1992

Keywords

  • Antioxidants
  • Asbestos
  • Cancer
  • Cigarette smoke and tar
  • Free radicals
  • Hydrogen peroxide
  • Hydroxyl radical
  • Iron chelators
  • Lung injury
  • Oxidants
  • Phagocytic cells
  • Reactive oxygen species

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)

Fingerprint Dive into the research topics of 'The role of free radicals in asbestos-induced diseases'. Together they form a unique fingerprint.

  • Cite this