Abstract
Multivalent oligonucleotide-based bonding elements have been synthesized and studied for the assembly and crystallization of gold 852nanoparticles. Through the use of organic branching points, divalent and trivalent DNA linkers were readily incorporated into the oligonucleotide shells that define DNA-nanoparticles and compared to monovalent linker systems. These multivalent bonding motifs enable the change of “bond strength” between particles and therefore modulate the effective “bond order.” In addition, the improved accessibility of strands between neighboring particles, either due to multivalency or modifications to increase strand flexibility, gives rise to superlattices with less strain in the crystallites compared to traditional designs. Furthermore, the increased availability and number of binding modes also provide a new variable that allows previously unobserved crystal structures to be synthesized, as evidenced by the formation of a thorium phosphide superlattice.
Original language | English (US) |
---|---|
Title of host publication | Spherical Nucleic Acids |
Subtitle of host publication | Volume 2 |
Publisher | Jenny Stanford Publishing |
Pages | 851-862 |
Number of pages | 12 |
Volume | 2 |
ISBN (Electronic) | 9781000092363 |
ISBN (Print) | 9789814877220 |
DOIs | |
State | Published - Jan 1 2021 |
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Engineering
- General Chemistry