TY - JOUR
T1 - The statistical mechanics of human weight change
AU - Lang, John C.
AU - De Sterck, Hans
AU - Abrams, Daniel M.
N1 - Funding Information:
This work was supported by James S. McDonnell Foundation (JSMF - https://www.jsmf.org): award no. 22002023, awarded to Daniel M. Abrams. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Bonnie Spring, Anarina Murillo and Michael Hynes for useful conversations.
Publisher Copyright:
© 2017 Lang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/12
Y1 - 2017/12
N2 - Over the past 35 years there has been a near doubling in the worldwide prevalence of obesity. Body Mass Index (BMI) distributions in high-income societies have increasingly shifted rightwards, corresponding to increases in average BMI that are due to well-studied changes in the socioeconomic environment. However, in addition to this shift, BMI distributions have also shown marked changes in their particular shape over time, exhibiting an ongoing right-skewed broadening that is not well understood. Here, we compile and analyze the largest data set so far of year-over-year BMI changes. The data confirm that, on average, heavy individuals become lighter while light individuals become heavier year-over-year, and also show that year-over-year BMI evolution is characterized by fluctuations with a magnitude that is linearly proportional to BMI. We find that the distribution of human BMIs is intrinsically dynamic—due to the short-term variability of human weight—and its shape is determined by a balance between deterministic drift towards a natural set point and diffusion resulting from random fluctuations in, e.g., diet and physical activity. We formulate a stochastic mathematical model for BMI dynamics, deriving a theoretical shape for the BMI distribution and offering a mechanism that may explain the right-skewed broadening of BMI distributions over time. An extension of the base model investigates the hypothesis that peer-to-peer social influence plays a role in BMI dynamics. While including this effect improves the fit with the data, indicating that correlations in the behavior of individuals with similar BMI may be important for BMI dynamics, testing social transmission against other plausible unmodeled effects and interpretations remains the subject of future work. Implications of our findings on the dynamics of BMI distributions for public health interventions are discussed.
AB - Over the past 35 years there has been a near doubling in the worldwide prevalence of obesity. Body Mass Index (BMI) distributions in high-income societies have increasingly shifted rightwards, corresponding to increases in average BMI that are due to well-studied changes in the socioeconomic environment. However, in addition to this shift, BMI distributions have also shown marked changes in their particular shape over time, exhibiting an ongoing right-skewed broadening that is not well understood. Here, we compile and analyze the largest data set so far of year-over-year BMI changes. The data confirm that, on average, heavy individuals become lighter while light individuals become heavier year-over-year, and also show that year-over-year BMI evolution is characterized by fluctuations with a magnitude that is linearly proportional to BMI. We find that the distribution of human BMIs is intrinsically dynamic—due to the short-term variability of human weight—and its shape is determined by a balance between deterministic drift towards a natural set point and diffusion resulting from random fluctuations in, e.g., diet and physical activity. We formulate a stochastic mathematical model for BMI dynamics, deriving a theoretical shape for the BMI distribution and offering a mechanism that may explain the right-skewed broadening of BMI distributions over time. An extension of the base model investigates the hypothesis that peer-to-peer social influence plays a role in BMI dynamics. While including this effect improves the fit with the data, indicating that correlations in the behavior of individuals with similar BMI may be important for BMI dynamics, testing social transmission against other plausible unmodeled effects and interpretations remains the subject of future work. Implications of our findings on the dynamics of BMI distributions for public health interventions are discussed.
UR - http://www.scopus.com/inward/record.url?scp=85038908722&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038908722&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0189795
DO - 10.1371/journal.pone.0189795
M3 - Article
C2 - 29253025
AN - SCOPUS:85038908722
SN - 1932-6203
VL - 12
JO - PloS one
JF - PloS one
IS - 12
M1 - e0189795
ER -