The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone

Nico Krieger, Jürgen Ott, Henrik Beuther, Fabian Walter, J. M.Diederik Kruijssen, David S. Meier, Elisabeth A.C. Mills, Yanett Contreras, Phil Edwards, Adam Ginsburg, Christian Henkel, Jonathan Henshaw, James Jackson, Jens Kauffmann, Steven Longmore, Sergio Martín, Mark R. Morris, Thushara Pillai, Matthew Rickert, Erik RosolowskyHiroko Shinnaga, Andrew Walsh, Farhad Yusef-Zadeh, Qizhou Zhang

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at ∼0.9 pc spatial and ∼2.0 km s-1 spectral resolution. In this paper, we present data on the inner ∼250 pc (1.°4) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J, K) = (1, 1)-(6, 6) to derive column density, kinematics, opacity, and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of 8-16 km s-1 and extended regions of optically thick (τ > 1) emission. Two components in kinetic temperature are detected at 25-50 K and 60-100 K, both being significantly hotter than the dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density, and line width. We find heating rates between ∼50 and ∼100 K Myr-1 along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics, and the observation of an evolutionary sequence of increasing star formation activity with orbital phase.

Original languageEnglish (US)
Article number77
JournalAstrophysical Journal
Volume850
Issue number1
DOIs
StatePublished - Nov 20 2017

Keywords

  • Galaxy: center
  • ISM: clouds
  • ISM: kinematics and dynamics
  • evolution
  • stars: formation

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone'. Together they form a unique fingerprint.

Cite this