The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity

Yingjie Zhou, Satoe Takahashi, Kazuaki Homma, Chongwen Duan, Jason Zheng, Mary Ann Cheatham, Jing Zheng

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Niemann-Pick Type C1 (NPC1) disease is a fatal neurovisceral disorder caused by dysfunction of NPC1 protein, which plays a role in intracellular cholesterol trafficking. The cholesterol-chelating agent, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is currently undergoing clinical trials for treatment of this disease. Though promising in alleviating neurological symptoms, HPβCD causes irreversible hearing loss in NPC1 patients and outer hair cell (OHC) death in animal models. We recently found that HPβCD-induced OHC death can be significantly alleviated in a mouse model lacking prestin, an OHC-specific motor protein required for the high sensitivity and sharp frequency selectivity of mammalian hearing. Since cholesterol status is known to influence prestin's electromotility, we examined how prestin contributes to HPβCD-induced OHC death in the disease context using the NPC1 knockout (KO) mouse model (NPC1-KO). We found normal expression and localization of prestin in NPC1-KO OHCs. Whole-cell patch-clamp recordings revealed a significant depolarization of the voltage-operating point of prestin in NPC1-KO mice, suggesting reduced levels of cholesterol in the lateral membrane of OHCs that lack NPC1. OHC loss and elevated thresholds were found for high frequency regions in NPC1-KO mice, whose OHCs retained their sensitivity to HPβCD. To investigate whether prestin's electromotile function contributes to HPβCD-induced OHC death, the prestin inhibitor salicylate was co-administered with HPβCD to WT and NPC1-KO mice. Neither oral nor intraperitoneal administration of salicylate mitigated HPβCD-induced OHC loss. To further determine the contribution of prestin's electromotile function, a mouse model expressing a virtually nonelectromotile prestin protein (499-prestin) was subjected to HPβCD treatment. 499-prestin knockin mice showed no resistance to HPβCD-induced OHC loss. As 499-prestin maintains its ability to bind cholesterol, our data imply that HPβCD-induced OHC death is ascribed to the structural role of prestin in maintaining the OHC's lateral membrane, rather than its motor function.

Original languageEnglish (US)
Pages (from-to)98
Number of pages1
JournalActa Neuropathologica Communications
Volume6
Issue number1
DOIs
StatePublished - Sep 24 2018

Funding

Imaging was performed at the Northwestern University’s Center for Advanced Microscopy generously supported by an NCI CCSG P30 CA06553 award to the Robert H Lurie Comprehensive Cancer Center. This work was supported by the Ara Parseghian Medical Research Fund to J.Z. and a Hugh Knowles Leadership Fund Award to J.Z. by the Knowles Hearing Center.

Keywords

  • Cholesterol
  • Electromotility
  • HPβCD
  • Niemann-pick type C1
  • Outer hair cells
  • Prestin
  • Salicylate

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Clinical Neurology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity'. Together they form a unique fingerprint.

Cite this