The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans

James F. Morley, Heather R. Brignull, Jill J. Weyers, Richard I. Morimoto*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

658 Scopus citations

Abstract

Studies of the mutant gene in Huntington's disease, and for eight related neurodegenerative disorders, have identified polyglutamine (polyQ) expansions as a basis for cellular toxicity. This finding has led to a disease hypothesis that protein aggregation and cellular dysfunction can occur at a threshold of approximately 40 glutamine residues. Here, we test this hypothesis by expression of fluorescently tagged polyQ proteins (Q29, Q33, Q35, Q40, and Q44) in the body wall muscle cells of Caenorhabditis elegans and show that young adults exhibit a sharp boundary at 35-40 glutamines associated with the appearance of protein aggregates and loss of motility. Surprisingly, genetically identical animals expressing near-threshold polyQ repeats exhibited a high degree of variation in the appearance of protein aggregates and cellular toxicity that was dependent on repeat length and exacerbated during aging. The role of genetically determined aging pathways in the progression of age-dependent polyQ-mediated aggregation and cellular toxicity was tested by expressing Q82 in the background of age-1 mutant animals that exhibit an extended lifespan. We observed a dramatic delay of polyQ toxicity and appearance of protein aggregates. These data provide experimental support for the threshold hypothesis of polyQ-mediated toxicity in an experimental organism and emphasize the importance of the threshold as a point at which genetic modifiers and aging influence biochemical environment and protein homeostasis in the cell.

Original languageEnglish (US)
Pages (from-to)10417-10422
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume99
Issue number16
DOIs
StatePublished - Aug 2002

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans'. Together they form a unique fingerprint.

Cite this