The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source

M. R. Siebert, R. J. Foley, M. R. Drout, C. D. Kilpatrick, B. J. Shappee, D. A. Coulter, D. Kasen, B. F. Madore, A. Murguia-Berthier, Y. C. Pan, A. L. Piro, J. X. Prochaska, E. Ramirez-Ruiz, A. Rest, C. Contreras, N. Morrell, C. Rojas-Bravo, J. D. Simon

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

We discovered Swope Supernova Survey 2017a (SSS17a) in the LIGO/Virgo Collaboration (LVC) localization volume of GW170817, the first detected binary neutron star (BNS) merger, only 10.9 hr after the trigger. No object was present at the location of SSS17a only a few days earlier, providing a qualitative spatial and temporal association with GW170817. Here, we quantify this association, finding that SSS17a is almost certainly the counterpart of GW170817, with the chance of a coincidence being ≤ 9 × 10-6 (90% confidence). We arrive at this conclusion by comparing the optical properties of SSS17a to other known astrophysical transients, finding that SSS17a fades and cools faster than any other observed transient. For instance, SSS17a fades >5 mag in g within 7 days of our first data point, while all other known transients of similar luminosity fade by <1 mag during the same time period. Its spectra are also unique, being mostly featureless, even as it cools. The rarity of "SSS17a-like" transients combined with the relatively small LVC localization volume and recent non-detection imply the extremely unlikely chance coincidence. We find that the volumetric rate of SSS17a-like transients is ≤ 1.6 × 104 Gpc-3 yr-1 and the Milky Way rate is ≤0.19 per century. A transient survey designed to discover similar events should be high cadence and observe in red filters. The LVC will likely detect substantially more BNS mergers than current optical surveys will independently discover SSS17a-like transients, however a 1 day cadence survey with the Large Synoptic Survey Telescope (LSST) could discover an order of magnitude more events.

Original languageEnglish (US)
Article numberL26
JournalAstrophysical Journal Letters
Volume848
Issue number2
DOIs
StatePublished - Oct 20 2017

Keywords

  • galaxies: individual (NGC 4993)
  • stars: individual (SSS17a)
  • stars: neutron
  • supernovae: general

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source'. Together they form a unique fingerprint.

Cite this