Abstract
Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development. One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single molecule fluorescence in situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We compared our experimental results with predictions from stochastic models of transcription, which indicated that the transcription levels of these genes appear to share a common method of control via burst frequency modulation. Our data help further elucidate the link between developmental gene regulatory mechanisms and transcriptional bursting.
Original language | English (US) |
---|---|
Article number | e56076 |
Pages (from-to) | 1-26 |
Number of pages | 26 |
Journal | eLife |
Volume | 9 |
DOIs | |
State | Published - Jun 2020 |
Funding
Fly stocks from Hugo Bellen and the Bloomington Drosophila Stock Center are gratefully appreciated. We thank Jessica Hornick and the Biological Imaging Facility for help with imaging and the Keck Facility at Northwestern for help with probe purification. We are very grateful to Shawn Little and Thomas Gregor for hosting RB at Princeton and their invaluable advice on adapting the smFISH method to imaginal discs. We also thank Arjun Raj and Brian Munsky for key suggestions on experimental and analytical development. Financial support was provided from the NIH (T32CA080621, RB; R35GM118144, RWC), NSF (1764421, MM and RWC), and the Simons Foundation (597491, MM and RWC). MM is a Simons Foundation Investigator.
ASJC Scopus subject areas
- General Neuroscience
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology