Theoretical investigation of graphitic BeO

Alessandra Continenza*, Renata M. Wentzcovitch, Arthur J. Freeman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The possibility of whether BeO, a wide-band-gap semiconductor (7.810.7 eV), may exist in the layered graphitic phaseas do the other members of the family of first-row compounds C and BNis investigated employing a first-principles total-energy local-density-approximation study of the electronic structure of this series of compounds in the layered and the dense wurtzitelike phases. We obtain the minimum-energy path between these phases in BeO and compare with those of C and BN. The chemical trends responsible for the relative metastability along the series are revealed after a detailed analysis of the differences of the energy components of the compounds in the two phases. We also offer a process for the synthesis of BeO which is based on recent progress in the synthesis of new graphitic materials by chemical vapor deposition.

Original languageEnglish (US)
Pages (from-to)3540-3544
Number of pages5
JournalPhysical Review B
Volume41
Issue number6
DOIs
StatePublished - Jan 1 1990

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Theoretical investigation of graphitic BeO'. Together they form a unique fingerprint.

Cite this