Therma: Thermal-aware Run-time Thread Migration for Nanophotonic Interconnects

Majed Valad Beigi, Gokhan Memik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

In this paper, we introduce Therma, a thermal-aware run-time thread migration mechanism for managing temperature fluctuations in nanophotonic networks. Nanophotonics is one of the most promising communication substrate candidates for next-generation high-performance systems. However, their underlying components are sensitive to temperature fluctuations. These fluctuations arise mostly because of the temperature changes on the cores, which are adjacent to nanophotonic components. Therma minimizes thermal fluctuations on these temperature sensitive components by moving threads across cores. Evaluation results reveal that when each core is executing a single thread, Therma achieves a 15.4% and 6.1% reduction in the photonic power consumption compared to the baseline and an interconnectoblivious thread migration scheme, respectively. It also reduces photonic power consumption by up to 20.7% compared to the alternatives when running multiple threads per core on the system.

Original languageEnglish (US)
Title of host publicationISLPED 2016 - Proceedings of the 2016 International Symposium on Low Power Electronics and Design
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages230-235
Number of pages6
ISBN (Electronic)9781450341851
DOIs
StatePublished - Aug 8 2016
Event21st IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2016 - San Francisco, United States
Duration: Aug 8 2016Aug 10 2016

Publication series

NameProceedings of the International Symposium on Low Power Electronics and Design
ISSN (Print)1533-4678

Other

Other21st IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2016
Country/TerritoryUnited States
CitySan Francisco
Period8/8/168/10/16

Keywords

  • Nanophotonic Interconnection Network
  • Temperature Variation

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Therma: Thermal-aware Run-time Thread Migration for Nanophotonic Interconnects'. Together they form a unique fingerprint.

Cite this