Thermal distribution in high power optical devices with power-law thermal conductivity

Chuanle Zhou, M. Grayson*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


We introduce a power-law approximation to model non-linear ranges of the thermal conductivity, and under this approximation derive a simple analytical expression for calculating the temperature profile in high power quantum cascade lasers and light emitting diodes. The thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is used as an example, having negative or positive power-law exponents depending on the thermal range of interest. The result is an increase or decrease in the temperature, respectively, relative to the uniform thermal conductivity assumption.

Original languageEnglish (US)
Title of host publicationQuantum Sensing and Nanophotonic Devices IX
StatePublished - 2012
EventQuantum Sensing and Nanophotonic Devices IX - San Francisco, CA, United States
Duration: Jan 22 2012Jan 26 2012

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherQuantum Sensing and Nanophotonic Devices IX
Country/TerritoryUnited States
CitySan Francisco, CA


  • T2SL
  • high power
  • temperature profile
  • thermal conductivity

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Applied Mathematics
  • Electrical and Electronic Engineering
  • Computer Science Applications


Dive into the research topics of 'Thermal distribution in high power optical devices with power-law thermal conductivity'. Together they form a unique fingerprint.

Cite this