Zdenek P. Bazant*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Investigated are thermodynamic restrictions on rate-type creep laws for porous materials which slowly solidify while carrying load (aging of concrete, i. e. , gradual filling of pores in concrete by hydration products) or slowly melt (gradual dehydration of concrete at high temperature). Thermodynamic potentials (Helmholtz free energy and complementary or Gibbs free energy) are determined. The chemical dissipation of elastic energy is calculated and the condition of its positiveness is proposed; this requires that elastic relations be introduced in terms of stress and strain rates for solidifying materials and in terms of stresses and strains for melting materials. Some creep laws used in practice are found to have thermodynamically inadmissible form. Creep laws of thermodynamically correct form are shown. The known forms of such laws often cannot, however, fit available long-time creep test data for concrete very well, unless some material parameters or rates are allowed to have thermodynamically inadmissible negative values for short periods of time.

Original languageEnglish (US)
Pages (from-to)933-952
Number of pages20
JournalASCE J Eng Mech Div
Issue number6
StatePublished - Dec 1979
Externally publishedYes

ASJC Scopus subject areas

  • Environmental Science(all)
  • Engineering(all)
  • Earth and Planetary Sciences(all)


Dive into the research topics of 'THERMODYNAMICS OF SOLIDIFYING OR MELTING VISCOELASTIC MATERIAL'. Together they form a unique fingerprint.

Cite this