Abstract
Temperature gradients and heat flow are omnipresent in natural and human-made settings and offer the opportunity to harvest energy from the environment. Thermoelectric energy harvesting (or energy scavenging) may one day eliminate the need for replacing batteries in applications such as remote sensor networks or mobile devices. Particularly, attractive is the ability to generate electricity from body heat that could power medical devices or implants, personal wireless networks or other consumer devices. This chapter focuses on the design principles for thermoelectric generators in energy harvesting applications, and the various thermoelectric generators available or in development. Such design principles provide good estimates of the power that could be produced and the size and complexity of the thermoelectric generator that would be required.
Original language | English (US) |
---|---|
Title of host publication | Energy Harvesting Technologies |
Publisher | Springer US |
Pages | 325-336 |
Number of pages | 12 |
ISBN (Print) | 9780387764634 |
DOIs | |
State | Published - Dec 1 2009 |
ASJC Scopus subject areas
- Engineering(all)