Abstract
The possibility of a prototype thermoelectric cooling device for operation near liquid nitrogen temperatures has been explored. In these devices, the figure of merit involves a combination of the properties of the two branches of the module. Here, we investigate the fabrication of a module with a new low temperature material, CsBi4Te6 (p-type), and the best known low temperature n-type materials Bi85Sb15. Transport measurements for each of these materials show high performance at low temperatures. Known values for the figure of merit Zmax of CsBi4Te6 3.5 × 10-3 K-1 at 225K and for Bi85Sb15 is 6.5 × 10-3; K-1 at 77K. At 100K these values drop to 2.0 × 10-3 K-1 for CsBi4Te6 and 6.0 × 10-3 K-1 for Bi85Sb15. Theoretical simulations based on these data show a cooling of ΔT = 12K at 100K, which is almost three times the efficiency of a Bi2Te3 module at that temperature. We present transport measurements of elements used in the fabrication of a low temperature thermoelectric module and properties of the resulting module.
Original language | English (US) |
---|---|
Pages (from-to) | 121-129 |
Number of pages | 9 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 691 |
State | Published - Jan 1 2002 |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering