Thermoelectric properties of Sr3GaSb3 - A chain-forming Zintl compound

Alex Zevalkink*, Wolfgang G. Zeier, Gregory Pomrehn, Eugen Schechtel, Wolfgang Tremel, G. Jeffrey Snyder

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

Inspired by the promising thermoelectric properties in the Zintl compounds Ca3AlSb3 and Ca5Al2Sb6, we investigate here the closely related compound Sr3GaSb3. Although the crystal structure of Sr3GaSb3 contains infinite chains of corner-linked tetrahedra, in common with Ca 3AlSb3 and Ca5Al2Sb6, it has twice as many atoms per unit cell (N = 56). This contributes to the exceptionally low lattice thermal conductivity (κL = 0.45 W m-1 K-1 at 1000 K) observed in Sr3GaSb 3 samples synthesized for this study by ball milling followed by hot pressing. High temperature transport measurements reveal that Sr 3GaSb3 is a nondegenerate semiconductor (consistent with Zintl charge-counting conventions) with relatively high p-type electronic mobility (∼30 cm2 V-1 s-1 at 300 K). Density functional calculations yield a band gap of ∼0.75 eV and predict a light valence band edge (∼0.5 me), in qualitative agreement with experiment. To rationally optimize the electronic transport properties of Sr3GaSb3 in accordance with a single band model, doping with Zn2+ on the Ga3+ site was used to increase the p-type carrier concentration. In optimally hole-doped Sr3Ga 1-xZnxSb3 (x = 0.0 to 0.1), we demonstrate a maximum figure of merit of greater than 0.9 at 1000 K.

Original languageEnglish (US)
Pages (from-to)9121-9128
Number of pages8
JournalEnergy and Environmental Science
Volume5
Issue number10
DOIs
StatePublished - Oct 2012

ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint Dive into the research topics of 'Thermoelectric properties of Sr<sub>3</sub>GaSb<sub>3</sub> - A chain-forming Zintl compound'. Together they form a unique fingerprint.

Cite this