Thermomechanical properties and deformation of coarse-grained models of hard-soft block copolymers

Zhiwei Cui*, L Catherine Brinson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

In this paper, we investigate the enhancement mechanism of the mechanical properties for hard-soft block copolymers by using molecular dynamics simulations at various temperatures. A coarse-grained approach is adopted to study sufficiently generic models. Our numerical experiments demonstrate that the nonbond potential plays a more significant role in mechanical properties compared to the bond potential. This finding serves as a cornerstone to understand the hard-soft materials. To explore the effect of hard segments, four copolymers with different concentrations and energy factors that describe the interaction between hard beads are conducted. Simulation results show that the mechanical performances of the system with large attractive force and small concentration of hard segments could be improved dramatically in conjunction with a moderate increment of the glass transition temperature. In particular, the energy factor shows a substantial influence in determining the microphase separation as well as the morphology of hard domains. These observations are believed to provide design guidelines for polymeric materials in engineering practice.

Original languageEnglish (US)
Article number022602
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume88
Issue number2
DOIs
StatePublished - Aug 29 2013

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Statistical and Nonlinear Physics
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Thermomechanical properties and deformation of coarse-grained models of hard-soft block copolymers'. Together they form a unique fingerprint.

Cite this