Third-order muscle models: Ahe role of oscillatory behavior in force control

Davide Piovesan, Alberto Pierobon, Ferdinando A. Mussa-Ivaldi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

This paper presents the analysis of a third-order linear differential equation representing a muscle-tendon system, including the identification of critical damping conditions. We analytically verified that this model is required for a faithful representation of muscle-skeletal muscles and provided numerical examples using the biomechanical properties of muscles and tendon reported in the literature. We proved the existence of a theoretical threshold for the ratio between tendon and muscle stiffness above which critical damping can never be achieved, thus resulting in an oscillatory free response of the system, independently of the value of the damping. Oscillation of the limb can be compensated only by active control, which requires creating an internal model of the limb mechanics. We demonstrated that, when admissible, over-damping of the muscle-tendon system occurs for damping values included within a finite interval between two separate critical limits. The same interval is a semi-infinite region in second-order models. Moreover, an increase in damping beyond the second critical point rapidly brings the system to mechanical instability.

Original languageEnglish (US)
Title of host publicationASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Pages493-501
Number of pages9
DOIs
StatePublished - Dec 1 2012
EventASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012 - Houston, TX, United States
Duration: Nov 9 2012Nov 15 2012

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2

Other

OtherASME 2012 International Mechanical Engineering Congress and Exposition, IMECE 2012
Country/TerritoryUnited States
CityHouston, TX
Period11/9/1211/15/12

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Third-order muscle models: Ahe role of oscillatory behavior in force control'. Together they form a unique fingerprint.

Cite this