TY - JOUR
T1 - Thorium copper phosphides
T2 - More diverse metal-phosphorus and phosphorus-phosphorus interactions than U analogues
AU - Jin, Geng Bang
AU - Malliakas, Christos D.
AU - Lin, Jian
N1 - Funding Information:
This work was performed at the Argonne National Laboratory operated by UChicago Argonne LLC for the United States Department of Energy under contract number DE-AC02-06CH11357 and was supported by the DOE Office of Basic Energy Sciences, Chemical Sciences, Heavy Elements Chemistry. C. D. M. was supported by the IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205), the State of Illinois and the International Institute for Nanotechnology (IIN).
PY - 2017
Y1 - 2017
N2 - To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP2, β-ThCu2P2, and ThCu5P3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP2 can be described as a filled UTe2-type with both dimeric P24- and monomeric P3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu2P2 contains only P3- anions and is isostructural with BaCu2S2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu5P3 adopts the YCo5P3-type structure consisting of P3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu2P2 indicate a metal. These new compounds may be charge-balanced and formulated as Th4+Cu+(P24-)1/2P3-, Th4+(Cu+)2(P3-)2, and Th4+(Cu+)5(P3-)3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. Titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP2 and UCu2P2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.
AB - To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP2, β-ThCu2P2, and ThCu5P3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP2 can be described as a filled UTe2-type with both dimeric P24- and monomeric P3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu2P2 contains only P3- anions and is isostructural with BaCu2S2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu5P3 adopts the YCo5P3-type structure consisting of P3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu2P2 indicate a metal. These new compounds may be charge-balanced and formulated as Th4+Cu+(P24-)1/2P3-, Th4+(Cu+)2(P3-)2, and Th4+(Cu+)5(P3-)3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. Titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP2 and UCu2P2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.
UR - http://www.scopus.com/inward/record.url?scp=85029648800&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85029648800&partnerID=8YFLogxK
U2 - 10.1039/c7dt02145c
DO - 10.1039/c7dt02145c
M3 - Article
C2 - 28795718
AN - SCOPUS:85029648800
SN - 1477-9226
VL - 46
SP - 12041
EP - 12052
JO - Dalton Transactions
JF - Dalton Transactions
IS - 36
ER -