Abstract
Despite the great progress that has been accomplished in supercapacitors, the imbalance of the development of positive and negative electrode materials still remains a critical issue to achieve high energy density; therefore, exploring high-performance negative electrode materials is highly desirable. In this article, three-dimensional cobalt phosphide (CoP) nanowire arrays were synthesized on a carbon cloth and were utilized as a binder-free supercapacitor negative electrode. The as-synthesized CoP nanowire arrays presented a high capacitance of 571.3 mF/cm2 at a current density of 1 mA/cm2. By using CoP nanowire arrays as the negative electrode and MnO2 nanowire arrays as the positive electrode, a flexible solid-state asymmetric supercapacitor has been fabricated and has exhibited excellent electrochemical performance, such as a high energy density of 0.69 mWh/cm3 and a high power density of 114.2 mW/cm3. In addition, the solid-state asymmetric supercapacitor shows high cycle stability with 82% capacitance retention after 5000 charge/discharge cycles. This work demonstrates that CoP is a promising negative electrode material for high-performance supercapacitor applications.
Original language | English (US) |
---|---|
Pages (from-to) | 16986-16994 |
Number of pages | 9 |
Journal | ACS Applied Materials and Interfaces |
Volume | 9 |
Issue number | 20 |
DOIs | |
State | Published - May 24 2017 |
Funding
This work was financially supported by Louisiana Board of Regents under contract No. LEQSF(2011-13)-RD-B-08 and in part by JSPS KAKENHI Grant Number JP26420693. Ramona Luna thanks the support from National Science Foundation (DMR-1262904). The authors would like to thank Dr. Jiechao Jiang at the University of Texas at Arlington for the XPS measurements. We would also like to acknowledge Sam Sternfield and Daniel Adams for their proofreading of the manuscript.
Keywords
- Cobalt phosphide
- flexible
- nanowire arrays
- negative electrode material
- supercapacitor
ASJC Scopus subject areas
- General Materials Science