TY - GEN
T1 - Three-dimensional FDTD analysis of an ultrawideband antenna-array element for confocal microwave imaging of nonpalpable breast tumors
AU - Hagness, Susan C.
AU - Taflove, Allen
AU - Bridges, Jack E.
N1 - Funding Information:
]This work was supported in part by the Small Business Innovative Research Grant LR43-CA67598-DlA2 from National Institutes of Health and internal funding from Interstitial, Inc. Computing resources were provided by Cray Research, Inc.
Publisher Copyright:
© 1999 IEEE.
PY - 1999
Y1 - 1999
N2 - We are developing a confocal microwave imaging system for the detection of early-stage breast cancer. Our proposed microwave sensor represents a novel adaptation and application of the principles of ultrawideband radar technology and confocal optical microscopy. The sensor is comprised of an electronically switched monostatic antenna array that, synthetically focuses a low-power pulsed microwave signal at a focal point within the breast and collects the backscattered signal. Malignant tumors have a significant scattering radar cross section due to the large dielectric contrast between malignant tumors and adjacent normal breast tissue. Therefore, the intensity of the backscattered signal increases dramatically when the focused transmitted signal encounters a malignant tumor. Two key performance specifications for the microwave sensor are the signal-to-clutter (S/C) ratio, defined as the ratio of the peak backscatter return from a tumor to the peak backscatter return from clutter, and the system dynamic range, defined as the ratio of the peak pulse power of the source to the system noise floor due to reverberations and thermal noise. Our two-dimensional FDTD simulations involving the computation of S/C ratios have demonstrated the feasibility of detecting lesions as small as 1 mm in diameter. In this paper, we highlight the results of our three-dimensional simulations of an antenna-array element placed at the surface of a breast tissue half-space.
AB - We are developing a confocal microwave imaging system for the detection of early-stage breast cancer. Our proposed microwave sensor represents a novel adaptation and application of the principles of ultrawideband radar technology and confocal optical microscopy. The sensor is comprised of an electronically switched monostatic antenna array that, synthetically focuses a low-power pulsed microwave signal at a focal point within the breast and collects the backscattered signal. Malignant tumors have a significant scattering radar cross section due to the large dielectric contrast between malignant tumors and adjacent normal breast tissue. Therefore, the intensity of the backscattered signal increases dramatically when the focused transmitted signal encounters a malignant tumor. Two key performance specifications for the microwave sensor are the signal-to-clutter (S/C) ratio, defined as the ratio of the peak backscatter return from a tumor to the peak backscatter return from clutter, and the system dynamic range, defined as the ratio of the peak pulse power of the source to the system noise floor due to reverberations and thermal noise. Our two-dimensional FDTD simulations involving the computation of S/C ratios have demonstrated the feasibility of detecting lesions as small as 1 mm in diameter. In this paper, we highlight the results of our three-dimensional simulations of an antenna-array element placed at the surface of a breast tissue half-space.
UR - http://www.scopus.com/inward/record.url?scp=85037545584&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037545584&partnerID=8YFLogxK
U2 - 10.1109/APS.1999.788325
DO - 10.1109/APS.1999.788325
M3 - Conference contribution
AN - SCOPUS:85037545584
T3 - IEEE Antennas and Propagation Society International Symposium: Wireless Technologies and Information Networks, APS 1999 - Held in conjunction with USNC/URSI National Radio Science Meeting
SP - 1886
EP - 1889
BT - IEEE Antennas and Propagation Society International Symposium
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 1999 IEEE Antennas and Propagation Society International Symposium, APSURSI 1999
Y2 - 11 July 1999 through 16 July 1999
ER -