Three dimensional spatial-temporal convergence of otolith related signals in vestibular only neurons in squirrel monkeys

Chen Huang Chiju*, Barry W. Peterson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


Spatio-temporal convergence (STC) properties of 19 vestibular only neurons' responses to translational head movements were examined in an alert, behaving squirrel monkey. In addition to standard tests that included 1.2 Hz yaw/pitch/roll rotations and inter-aural/naso-occipital/dorso-ventral translations, we also observed responses to translations along multiple directions in several orthogonal planes. Neural responses were fitted first by a model that permitted STC in all planes, characterized by a non-zero minimum and a gradual shift of phase. We then evaluated statistically whether models with fewer independent dynamic parameters yielded equally satisfactory results. The responses of 13 neurons were adequately fit by simple cosine models (1-D) as well as models that allowed complex STC behavior. Of the six neurons exhibiting STC, five could be modeled with two independent phase parameters (2-D) while the remaining neuron required a model with three independent phase parameters (3-D). The maximum translation sensitivity and phase, Smax and φmax, and minimum translation sensitivity and phase, S min and φmin, were estimated from the reconstructed sensitivity and phase surfaces. The tuning ratio, Smin/S max, in STC neurons was > 0.40 while in 1-D neurons it was < 0.25. Furthermore, the maximum response vectors of most 1-D neurons lay within 20° of either the horizontal or sagittal plane while those of STC neurons lay > 20° from both planes. No difference in other response properties, such as φmax or rotational responses, was found between neurons exhibiting STC and the simple cosine tuning. Our results suggest that the STC behavior observed in otolith-related vestibular neurons probably arises from summing inputs from afferents, with diverse response dynamics, innervating different otolith macula.

Original languageEnglish (US)
Pages (from-to)410-426
Number of pages17
JournalExperimental Brain Research
Issue number3
StatePublished - Jan 2006


  • 3-D
  • Otolith
  • Primate
  • Spatial
  • Temporal

ASJC Scopus subject areas

  • Neuroscience(all)


Dive into the research topics of 'Three dimensional spatial-temporal convergence of otolith related signals in vestibular only neurons in squirrel monkeys'. Together they form a unique fingerprint.

Cite this