TY - JOUR
T1 - Three-mode electrochemical sensing of ultralow MicroRNA levels
AU - Labib, Mahmoud
AU - Khan, Nasrin
AU - Ghobadloo, Shahrokh M.
AU - Cheng, Jenny
AU - Pezacki, John Paul
AU - Berezovski, Maxim V.
PY - 2013/2/27
Y1 - 2013/2/27
N2 - MicroRNAs (miRNAs) are an emerging class of biomarkers that are frequently deregulated in cancer cells and have shown great promise for cancer classification and prognosis. In this work, we developed a three-mode electrochemical sensor for detection and quantitation of ultralow levels of miRNAs in a wide dynamic range of measured concentrations. The sensor facilitates three detection modalities based on hybridization (H-SENS), p19 protein binding (P-SENS), and protein displacement (D-SENS). The combined three-mode sensor (HPD-SENS) identifies as low as 5 aM or 90 molecules of miRNA per 30 μL of sample without PCR amplification, and can be operated within the dynamic range from 10 aM to 1 μM. The HPD sensor is made on a commercially available gold nanoparticles-modified electrode and is suitable for analyzing multiple miRNAs on a single electrode. This three-mode sensor exhibits high selectivity and specificity and was used for sequential analysis of miR-32 and miR-122 on one electrode. In addition, the H-SENS can recognize miRNAs with different A/U and G/C content and distinguish between a fully matched miRNA and a miRNA comprising either a terminal or a middle single base mutation. Furthermore, the H- and P-SENS were successfully employed for direct detection and profiling of three endogenous miRNAs, including hsa-miR-21, hsa-miR-32, and hsa-miR-122 in human serum, and the sensor results were validated by qPCR.
AB - MicroRNAs (miRNAs) are an emerging class of biomarkers that are frequently deregulated in cancer cells and have shown great promise for cancer classification and prognosis. In this work, we developed a three-mode electrochemical sensor for detection and quantitation of ultralow levels of miRNAs in a wide dynamic range of measured concentrations. The sensor facilitates three detection modalities based on hybridization (H-SENS), p19 protein binding (P-SENS), and protein displacement (D-SENS). The combined three-mode sensor (HPD-SENS) identifies as low as 5 aM or 90 molecules of miRNA per 30 μL of sample without PCR amplification, and can be operated within the dynamic range from 10 aM to 1 μM. The HPD sensor is made on a commercially available gold nanoparticles-modified electrode and is suitable for analyzing multiple miRNAs on a single electrode. This three-mode sensor exhibits high selectivity and specificity and was used for sequential analysis of miR-32 and miR-122 on one electrode. In addition, the H-SENS can recognize miRNAs with different A/U and G/C content and distinguish between a fully matched miRNA and a miRNA comprising either a terminal or a middle single base mutation. Furthermore, the H- and P-SENS were successfully employed for direct detection and profiling of three endogenous miRNAs, including hsa-miR-21, hsa-miR-32, and hsa-miR-122 in human serum, and the sensor results were validated by qPCR.
UR - http://www.scopus.com/inward/record.url?scp=84874589875&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874589875&partnerID=8YFLogxK
U2 - 10.1021/ja308216z
DO - 10.1021/ja308216z
M3 - Article
C2 - 23362834
AN - SCOPUS:84874589875
SN - 0002-7863
VL - 135
SP - 3027
EP - 3038
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 8
ER -