Time-dependent dynamics of methyl iodide photodissociation in the first continuum

Hua Guo*, George C Schatz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

130 Scopus citations

Abstract

The photodissociation dynamics of methyl iodide (CH3I) and its deuterated counterpart (CD3I) in the A band is studied using a time-dependent quantum mechanical method, based on the fast Fourier transform (FFT) method of Kosloff and Kosloff. The calculation uses a pseudotriatomic approximation in which the umbrella mode of CH3 (CD3) is approximated by a C-X (X = H3, D3) stretch. In addition, the I-C-X dissociation is assumed collinear and angular momentum is ignored. The wave packet is propagated on coupled electronic potential surfaces which we have developed by revising Shapiro's potentials to fit recent experimental data. Good agreement between our calculations and experiment has been obtained for the absorption spectrum, the vibrational distributions for the methyl umbrella mode, and I*/I branching ratios for both CH3I and CD 3I at 248 nm. According to our model, the CH3 fragment in the I* channel at 266 nm is predominantly at its ground vibrational state, while the vibrational distribution in the lower I channel extends to ν = 6 and has a peak at ν = 1.

Original languageEnglish (US)
Pages (from-to)393-402
Number of pages10
JournalThe Journal of Chemical Physics
Volume93
Issue number1
DOIs
StatePublished - Jan 1 1990

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Time-dependent dynamics of methyl iodide photodissociation in the first continuum'. Together they form a unique fingerprint.

Cite this