Topotecan enhances immune clearance of gliomas

Jun Wei, Guillermo DeAngulo, Wei Sun, Sakina F. Hussain, Hernan Vasquez, Justin Jordan, Jeffery Weinberg, Johannes Wolff, Nadya Koshkina, Amy B. Heimberger*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Despite aggressive surgery, radiation therapy, and chemotherapy, glioblastoma multiforme (GBM) is refractory to therapy, recurs quickly, and results in a median survival time of only 14 months. The modulation of the apoptotic receptor Fas with cytotoxic agents could potentiate the response to therapy. However, Fas ligand (FasL) is not expressed in the brain and therefore this Fas-inducing cell death mechanism cannot be utilized. Vaccination of patients with gliomas has shown promising responses. In animal studies, brain tumors of vaccinated mice were infiltrated with activated T cells. Since activated immune cells express FasL, we hypothesized that combination of immunotherapy with chemotherapy can activate Fas signaling, which could be responsible for a synergistic or additive effect of the combination. When we treated the human glioma cell line U-87 and GBM tumor cells isolated from patients with TPT, Fas was up regulated. Subsequent administration of soluble Fas ligand (sFasL) to treated cells significantly increased their cell death indicating that these Fas receptors were functional. Similar effect was observed when CD3+ T cells were used as a source of the FasL, indicating that the up regulated Fas expression on glioma cells increases their susceptibility to cytotoxic T cell killing. This additive effect was not observed when glioma cells were pre-treated with temozolomide, which was unable to increase Fas expression in tumor. Inhibition of FasL activity with the antagonistic antibody Nok-1 mitigated these effects confirming that these responses were specifically mediated by the Fas-FasL interaction. Furthermore, the CD3+ T cells co-cultured with topotecan treated U-87 and autologous GBM tumor cells showed a significant increase in expression in IFN-γ, a key cytokine produced by activated T cells, and accordingly enhanced tumor cytotoxicity. Based on our data we conclude that drugs, such as topotecan, which cause up regulation of Fas on glioma cells can be potentially exploited with immunotherapy to enhance immune clearance of tumors via Fas signaling.

Original languageEnglish (US)
Pages (from-to)259-270
Number of pages12
JournalCancer Immunology, Immunotherapy
Volume58
Issue number2
DOIs
StatePublished - Feb 2009
Externally publishedYes

Keywords

  • Fas
  • FasL
  • Gliomas
  • Immunotherapy
  • Topotecan

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Topotecan enhances immune clearance of gliomas'. Together they form a unique fingerprint.

Cite this