Toward higher-performance bionic limbs for wider clinical use

Dario Farina*, Ivan Vujaklija, Rickard Brånemark, Anthony M.J. Bull, Hans Dietl, Bernhard Graimann, Levi J. Hargrove, Klaus Peter Hoffmann, He (Helen) Huang, Thorvaldur Ingvarsson, Hilmar Bragi Janusson, Kristleifur Kristjánsson, Todd Kuiken, Silvestro Micera, Thomas Stieglitz, Agnes Sturma, Dustin Tyler, Richard F.ff Weir, Oskar C. Aszmann

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.

Original languageEnglish (US)
JournalNature Biomedical Engineering
DOIs
StateAccepted/In press - 2021

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Medicine (miscellaneous)
  • Biomedical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Toward higher-performance bionic limbs for wider clinical use'. Together they form a unique fingerprint.

Cite this