Abstract
Recently, near-field scanning optical microscopy (NSOM) and its variations, which combine the scanning probe technology with optical microscopy, have been intensively applied in the study of biology, material science, surface chemistry, information storage, and nanofabrication. However, due to the serial scanning nature, the speed at which NSOM can successively records highly resolved images is rather limited. This hampers the applications of NSOM in characterizing dynamic response of particular samples. In this article, we perform systematic investigation of NSOM system parameters, which include scan rate, signal detector amplification, and illumination intensity. In this work, a model of signal flow for the NSOM system has been established to quantitatively investigate the interplay of the key process parameters and to further explore the technique solutions for high-speed NSOM imaging. The model is in good agreement with experimental results and the optimized conditions for high speed NSOM imaging are suggested.
Original language | English (US) |
---|---|
Title of host publication | Electronic and Photonics Packaging, Electrical Systems Design and Photonics, and Nanotechnology |
Pages | 487-491 |
Number of pages | 5 |
Volume | 4 |
DOIs | |
State | Published - Dec 1 2004 |
Event | 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE 2004 - Anaheim, CA, United States Duration: Nov 13 2004 → Nov 19 2004 |
Other
Other | 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE 2004 |
---|---|
Country/Territory | United States |
City | Anaheim, CA |
Period | 11/13/04 → 11/19/04 |
ASJC Scopus subject areas
- Mechanical Engineering
- Electrical and Electronic Engineering