Towards precision medicine: Advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy

Chang Zeng, Emily Kunce Stroup, Zhou Zhang, Brian C.H. Chiu, Wei Zhang*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

61 Scopus citations

Abstract

Robust and clinically convenient biomarkers for cancer diagnosis, early detection, and prognosis have great potential to improve patient survival and are the key to precision medicine. The advent of next-generation sequencing technologies enables a more sensitive and comprehensive profiling of genetic and epigenetic information in tumor-derived materials. Researchers are now able to monitor the dynamics of tumorigenesis in new dimensions, such as using circulating cell-free DNA (cfDNA) and tumor DNA (ctDNA). Mutation-based assays in liquid biopsy cannot always provide consistent results across studies due partly to intra- and inter-tumoral heterogeneity as well as technical limitations. In contrast, epigenetic analysis of patient-derived cfDNA is a promising alternative, especially for early detection and disease surveillance, because epigenetic modifications are tissue-specific and reflect the dynamic process of cancer progression. Therefore, cfDNA-based epigenetic assays are emerging to be a highly sensitive, minimally invasive tool for cancer diagnosis and prognosis with great potential in future precise care of cancer patients. The major obstacle for applying epigenetic analysis of cfDNA, however, has been the lack of enabling techniques with high sensitivity and technical robustness. In this review, we summarized the advances in epigenome-wide profiling of 5-hydroxymethylcytosine (5hmC) in cfDNA, focusing on the detection approaches and potential role as biomarkers in different cancer types.

Original languageEnglish (US)
Article number12
JournalCancer Communications
Volume39
Issue number1
DOIs
StatePublished - Mar 29 2019

Keywords

  • 5-Hydroxymethylcytosine
  • Cancer biomarker
  • Cell-free DNA
  • Epigenetics
  • Liquid biopsy

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Towards precision medicine: Advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy'. Together they form a unique fingerprint.

Cite this