TY - JOUR
T1 - Tracking melanosomes inside a cell to study molecular motors and their interaction
AU - Kural, Comert
AU - Serpinskaya, Anna S.
AU - Chou, Ying Hao
AU - Goldman, Robert D.
AU - Gelfand, Vladimir I.
AU - Selvin, Paul R.
PY - 2007/3/27
Y1 - 2007/3/27
N2 - Cells known as melanophores contain melanosomes, which are membrane organelles filled with melanin, a dark, nonfluorescent pigment. Melanophores aggregate or disperse their melanosomes when the host needs to change its color in response to the environment (e.g., camouflage or social interactions). Melanosome transport in cultured Xenopus melanophores is mediated by myosin V, heterotrimeric kinesin-2, and cytoplasmic dynein. Here, we describe a technique for tracking individual motors of each type, both individually and in their interaction, with high spatial (≈2 nm) and temporal (≈ 1 msec) localization accuracy. This method enabled us to observe (i) stepwise movement of kinesin-2 with an average step size of 8 nm; (ii) smoother melanosome transport (with fewer pauses), in the absence of intermediate filaments (IFs); and (iii) motors of actin filaments and microtubules working on the same cargo nearly simultaneously, indicating that a diffusive step is not needed between the two systems of transport. In concert with our previous report, our results also show that dynein-driven retrograde movement occurs in 8-nm steps. Furthermore, previous studies have shown that melanosomes carried by myosin V move 35 nm in a stepwise fashion in which the step rise-times can be as long as 80 msec. We observed 35-nm myosin V steps in melanophores containing no IFs. We find that myosin V steps occur faster in the absence of IFs, indicating that the IF network physically hinders organelle transport.
AB - Cells known as melanophores contain melanosomes, which are membrane organelles filled with melanin, a dark, nonfluorescent pigment. Melanophores aggregate or disperse their melanosomes when the host needs to change its color in response to the environment (e.g., camouflage or social interactions). Melanosome transport in cultured Xenopus melanophores is mediated by myosin V, heterotrimeric kinesin-2, and cytoplasmic dynein. Here, we describe a technique for tracking individual motors of each type, both individually and in their interaction, with high spatial (≈2 nm) and temporal (≈ 1 msec) localization accuracy. This method enabled us to observe (i) stepwise movement of kinesin-2 with an average step size of 8 nm; (ii) smoother melanosome transport (with fewer pauses), in the absence of intermediate filaments (IFs); and (iii) motors of actin filaments and microtubules working on the same cargo nearly simultaneously, indicating that a diffusive step is not needed between the two systems of transport. In concert with our previous report, our results also show that dynein-driven retrograde movement occurs in 8-nm steps. Furthermore, previous studies have shown that melanosomes carried by myosin V move 35 nm in a stepwise fashion in which the step rise-times can be as long as 80 msec. We observed 35-nm myosin V steps in melanophores containing no IFs. We find that myosin V steps occur faster in the absence of IFs, indicating that the IF network physically hinders organelle transport.
KW - Bright-field imaging with one-nanometer accuracy (bFIONA)
KW - Dynein
KW - Intermediate filaments
KW - Kinesin-2
KW - Myosin V
UR - http://www.scopus.com/inward/record.url?scp=34248356765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34248356765&partnerID=8YFLogxK
U2 - 10.1073/pnas.0700145104
DO - 10.1073/pnas.0700145104
M3 - Article
C2 - 17369356
AN - SCOPUS:34248356765
SN - 0027-8424
VL - 104
SP - 5378
EP - 5382
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 13
ER -