TY - GEN
T1 - Tracking non-stationary appearances and dynamic feature selection
AU - Yang, Ming
AU - Wu, Ying
PY - 2005
Y1 - 2005
N2 - Since the appearance changes of the target jeopardize visual measurements and often lead to tracking failure in practice, trackers need to be adaptive to non-stationary appearances or to dynamically select features to track. However, this idea is threatened by the risk of adaptation drift that roots in its ill-posed nature, unless good constraints are imposed. Different from most existing adaptation schemes, we enforce three novel constraints for the optimal adaptation: (1) negative data, (2) bottom-up pair-wise data constraints, and (3) adaptation dynamics. Substantializing the general adaptation problem as a subspace adaptation problem, this paper gives a closed-form solution as well as a practical iterative algorithm. Extensive experiments have shown that the proposed approach can largely alleviate adaptation drift and achieve better tracking results.
AB - Since the appearance changes of the target jeopardize visual measurements and often lead to tracking failure in practice, trackers need to be adaptive to non-stationary appearances or to dynamically select features to track. However, this idea is threatened by the risk of adaptation drift that roots in its ill-posed nature, unless good constraints are imposed. Different from most existing adaptation schemes, we enforce three novel constraints for the optimal adaptation: (1) negative data, (2) bottom-up pair-wise data constraints, and (3) adaptation dynamics. Substantializing the general adaptation problem as a subspace adaptation problem, this paper gives a closed-form solution as well as a practical iterative algorithm. Extensive experiments have shown that the proposed approach can largely alleviate adaptation drift and achieve better tracking results.
UR - http://www.scopus.com/inward/record.url?scp=24644460695&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=24644460695&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2005.352
DO - 10.1109/CVPR.2005.352
M3 - Conference contribution
AN - SCOPUS:24644460695
SN - 0769523722
SN - 9780769523729
T3 - Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
SP - 1059
EP - 1066
BT - Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
PB - IEEE Computer Society
T2 - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
Y2 - 20 June 2005 through 25 June 2005
ER -