Trajectory studies of collisional relaxation of highly excited CS 2 by H2, CO, HCl, CS2, and CH4

György Lendvay*, George C. Schatz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


The collisional relaxation of vibrationally highly excited CS2 by thermal ensembles of H2, CO, HCl, CS2, and CH 4 is investigated theoretically using classical trajectory calculations with empirical potentials that include van der Waals and electrostatic interactions. The successive collisions method suggested by Bruehl and Schatz is shown to be an effective way to study energy transfer from vibrationally hot polyatomic molecules to molecules of a thermal bath. The average energy transferred per collision to H2 and CO matches experimental measurements within a factor of 2, while that to CH4 and CS2 matches experiment within a factor of 4. These differences are consistent with combined theoretical and experimental uncertainties. Energy transfer to HCl is, however, off by as much as a factor of 7, despite our use of a potential which is realistic at long range. The energy transferred is partitioned mostly to relative translation when the collider is H2 or CO and partly to rotation for CH4. The energy dependence of the energy transfer and the interrelations among energy-transfer moments, including 〈ΔEup〉, 〈ΔEdown〉, and 〈ΔE2〉, are also reported.

Original languageEnglish (US)
Pages (from-to)4356-4365
Number of pages10
JournalThe Journal of Chemical Physics
Issue number6
StatePublished - 1992

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Trajectory studies of collisional relaxation of highly excited CS 2 by H2, CO, HCl, CS2, and CH4'. Together they form a unique fingerprint.

Cite this