Trajectory tracking among landmarks and binary sensor-beams

Benjamín Tovar*, Todd David Murphey

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We study a trajectory tracking problem for a mobile robot moving in the plane using combinatorial observations of the state. These observations come from crossing binary detection beams. A binary detection beam is a sensing abstraction arising from physical sensor beams or virtual beams that are derived from several sensing modalities, such as actual detection beams in the environment, changes in the angular order of landmarks around the robot, or recognizable markings in the plane. We solve the filtering problem from a geometric perspective and present its relation to linear recursive filters in control theory. Subsequently, we develop the acceleration control of the robot to track a given input trajectory, with a finite control set consisting on moving toward landmarks naturally modeling the robot as a switched dynamical system. We present experiments using an e-puck differential-drive robot, in which a useful estimate of the state for tracking is produced regardless of nontrivial uncertainty.

Original languageEnglish (US)
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2121-2127
Number of pages7
ISBN (Print)9781467314039
DOIs
StatePublished - Jan 1 2012
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: May 14 2012May 18 2012

Other

Other 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
CountryUnited States
CitySaint Paul, MN
Period5/14/125/18/12

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Trajectory tracking among landmarks and binary sensor-beams'. Together they form a unique fingerprint.

Cite this