TY - JOUR
T1 - Transcription factor KLF11 integrates progesterone receptor signaling and proliferation in uterine leiomyoma cells
AU - Yin, Ping
AU - Lin, Zhihong
AU - Reierstad, Scott
AU - Wu, Ju
AU - Ishikawa, Hiroshi
AU - Marsh, Erica E.
AU - Innes, Joy
AU - Cheng, Youhong
AU - Pearson, Kerry
AU - Coon V, John Sayler
AU - Kim, J. Julie
AU - Chakravarti, Debabrata
AU - Bulun, Serdar E.
PY - 2010/2/15
Y1 - 2010/2/15
N2 - Uterine leiomyoma is the most common tumor of the female genital tract and the leading cause of hysterectomy. Although progesterone stimulates the proliferation of uterine leiomyoma cells, the mechanism of progesterone action is not well understood. We used chromatin immunoprecipitation (ChIP)-cloning approach to identify progesterone receptor (PR) target genes in primary uterine leiomyoma smooth muscle cells. We identified 18 novel PR-binding sites, one of which was located 20.5 kb upstream of the transcriptional start site of the Krüppel-like transcription factor 11 (KLF11) gene. KLF11 mRNA levels were minimally downregulated by progesterone but robustly upregulated by the progesterone antagonist RU486. Luciferase reporter assays showed significant baseline and RU486-inducible promoter activity in the KLF11 basal promoter or distal PR-binding region, both of which contained multiple Sp1-binding sequences but lacked classic progesterone response elements. RU486 stimulated recruitment of Sp1, RNA polymerase II, PR, and the coactivators SRC-1 and SRC-2 to the distal region and basal promoter. siRNA knockdown of PR increased KLF11 expression, whereas knockdown of KLF11 increased leiomyoma cell proliferation and abolished the antiproliferative effect of RU486. In vivo, KLF11 expression was significantly lower in leiomyoma tissues compared with adjacent myometrial tissues. Taken together, using a ChIP-cloning approach, we uncovered KLF11 as an integrator of PR signaling and proliferation in uterine leiomyoma cells.
AB - Uterine leiomyoma is the most common tumor of the female genital tract and the leading cause of hysterectomy. Although progesterone stimulates the proliferation of uterine leiomyoma cells, the mechanism of progesterone action is not well understood. We used chromatin immunoprecipitation (ChIP)-cloning approach to identify progesterone receptor (PR) target genes in primary uterine leiomyoma smooth muscle cells. We identified 18 novel PR-binding sites, one of which was located 20.5 kb upstream of the transcriptional start site of the Krüppel-like transcription factor 11 (KLF11) gene. KLF11 mRNA levels were minimally downregulated by progesterone but robustly upregulated by the progesterone antagonist RU486. Luciferase reporter assays showed significant baseline and RU486-inducible promoter activity in the KLF11 basal promoter or distal PR-binding region, both of which contained multiple Sp1-binding sequences but lacked classic progesterone response elements. RU486 stimulated recruitment of Sp1, RNA polymerase II, PR, and the coactivators SRC-1 and SRC-2 to the distal region and basal promoter. siRNA knockdown of PR increased KLF11 expression, whereas knockdown of KLF11 increased leiomyoma cell proliferation and abolished the antiproliferative effect of RU486. In vivo, KLF11 expression was significantly lower in leiomyoma tissues compared with adjacent myometrial tissues. Taken together, using a ChIP-cloning approach, we uncovered KLF11 as an integrator of PR signaling and proliferation in uterine leiomyoma cells.
UR - http://www.scopus.com/inward/record.url?scp=76749167058&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76749167058&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-09-2612
DO - 10.1158/0008-5472.CAN-09-2612
M3 - Article
C2 - 20124487
AN - SCOPUS:76749167058
SN - 0008-5472
VL - 70
SP - 1722
EP - 1730
JO - Cancer Research
JF - Cancer Research
IS - 4
ER -