Abstract
The generation of CD8+ T-cell memory is a major aim of vaccination. While distinct subsets of CD8+ T-cells are generated following immunization that differ in their ability to confer long-term immunity against infection, the transcriptional profiles of these subsets within endogenous vaccine-induced CD8+ T cell responses have not been resolved. Here, we measure global transcriptional profiles of endogenous effector (TEFF), effector memory (TEM) and central memory (TCM) CD8+ T-cells arising from immunization with three distinct prime-boost vaccine regimens. While a proportion of transcripts were uniquely regulated within distinct CD8+ T cell populations, we observed progressive up- or down-regulation in the expression of a majority of differentially expressed transcripts when subsets were compared in the order TN>TCM>TEM>TEFF. Strikingly, when we compared global differences in gene expression between TN, TCM, TEM and TEFF cells with known transcriptional changes that result when CD8+ T cells repetitively encounter antigen, our analysis overwhelmingly favored a model whereby cumulative antigen stimulation drives differentiation specifically from TN>TCM>TEM>TEFF and this was common to all vaccines tested. These findings provide insight into the molecular basis of immunological memory and identify potential biomarkers for characterization of vaccine-induced responses and prediction of vaccine efficacy.
Original language | English (US) |
---|---|
Pages (from-to) | 914-923 |
Number of pages | 10 |
Journal | Vaccine |
Volume | 33 |
Issue number | 7 |
DOIs | |
State | Published - Feb 11 2015 |
Keywords
- Adenovirus vector
- CD8
- LCMV vector
- Memory T cells
- Prime-boost vaccination
- T cell memory
ASJC Scopus subject areas
- Molecular Medicine
- Immunology and Microbiology(all)
- veterinary(all)
- Public Health, Environmental and Occupational Health
- Infectious Diseases