Transformation of K2Sb8Q13and KSb5Q8Bulk Crystals to Sb2Q3(Q = S, Se) Nanofibers by Acid-Base Solution Chemistry

Hyungseok Lee, Byeongjun Yoo, Dawoon Kim, Joonil Cha, Yeo Kyung Kang, Sung Pyo Cho, Taeghwan Hyeon, Myung Gil Kim*, Mercouri G. Kanatzidis*, In Chung*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The ability to manipulate crystal structures using kinetic control is of broad interest because it enables the design of materials with structures, compositions, and morphologies that may otherwise be unattainable. Herein, we report the low-temperature structural transformation of bulk inorganic crystals driven by hard-soft acid-base (HSAB) chemistry. We show that the three-dimensional framework K2Sb8Q13and layered KSb5Q8(Q = S, Se, and Se/S solid solutions) compounds transform to one-dimensional Sb2Q3nano/microfibers in N2H4·H2O solution by releasing Q2-and K+ions. At 100 °C and ambient pressure, a transformation process takes place that leads to significant structural changes in the materials, including the formation and breakage of covalent bonds between Sb and Q. Despite the insolubility of the starting crystals in N2H4·H2O under the given conditions, the mechanism of this transformation can be rationalized by applying the HSAB principle. By adjusting factors such as the reactants' acid/base properties, temperature, and pressure, the process can be controlled, allowing for the achievement of a wide range of optical band gaps (ranging from 1.14 to 1.59 eV) while maintaining the solid solution nature of the anion sublattice in the Sb2Q3nanofibers.

Original languageEnglish (US)
Pages (from-to)15951-15962
Number of pages12
JournalJournal of the American Chemical Society
Volume145
Issue number29
DOIs
StatePublished - Jul 26 2023

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Transformation of K2Sb8Q13and KSb5Q8Bulk Crystals to Sb2Q3(Q = S, Se) Nanofibers by Acid-Base Solution Chemistry'. Together they form a unique fingerprint.

Cite this