TY - JOUR
T1 - Transgenic quail as a model for research in the avian nervous system
T2 - A comparative study of the auditory brainstem
AU - Seidl, Armin H.
AU - Sanchez, Jason Tait
AU - Schecterson, Leslayann
AU - Tabor, Kathryn M.
AU - Wang, Yuan
AU - Kashima, Daniel T.
AU - Poynter, Greg
AU - Huss, David
AU - Fraser, Scott E.
AU - Lansford, Rusty
AU - Rubel, Edwin W.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proved problematic. As a result, experiments aimed at genetic manipulations on birds have remained difficult for this popular research tool. Recently, lentiviral methods have allowed the production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal specificity and stable expression of enhanced green fluorescent protein (eGFP) across generations (termed here GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of genetic manipulation, we compared the development, organization, structure, and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) with that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM), and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken.
AB - Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proved problematic. As a result, experiments aimed at genetic manipulations on birds have remained difficult for this popular research tool. Recently, lentiviral methods have allowed the production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal specificity and stable expression of enhanced green fluorescent protein (eGFP) across generations (termed here GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of genetic manipulation, we compared the development, organization, structure, and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) with that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM), and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken.
KW - Auditory brainstem
KW - Transgenic quail
UR - http://www.scopus.com/inward/record.url?scp=84869994255&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869994255&partnerID=8YFLogxK
U2 - 10.1002/cne.23187
DO - 10.1002/cne.23187
M3 - Article
C2 - 22806400
AN - SCOPUS:84869994255
SN - 0021-9967
VL - 521
SP - 5
EP - 23
JO - Journal of Comparative Neurology
JF - Journal of Comparative Neurology
IS - 1
ER -