Transient activation of specific neurons in mice by selective expression of the capsaicin receptor

Ali D. Güler, Aundrea Rainwater, Jones Griffith Parker, Graham L. Jones, Emanuela Argilli, Benjamin R. Arenkiel, Michael D. Ehlers, Antonello Bonci, Larry S. Zweifel, Richard D. Palmiter*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ∼10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches.

Original languageEnglish (US)
Article number746
JournalNature communications
Volume3
DOIs
StatePublished - 2012

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Transient activation of specific neurons in mice by selective expression of the capsaicin receptor'. Together they form a unique fingerprint.

Cite this