Transient laminin beta 1a Induction Defines the Wound Epidermis during Zebrafish Fin Regeneration

Chen Hui Chen, Alexander F. Merriman, Jeremiah Savage, Jason Willer, Taylor Wahlig, Elias Nicholas Katsanis, Viravuth P. Yin, Kenneth D. Poss*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The first critical stage in salamander or teleost appendage regeneration is creation of a specialized epidermis that instructs growth from underlying stump tissue. Here, we performed a forward genetic screen for mutations that impair this process in amputated zebrafish fins. Positional cloning and complementation assays identified a temperature-sensitive allele of the ECM component laminin beta 1a (lamb1a) that blocks fin regeneration. lamb1a, but not its paralog lamb1b, is sharply induced in a subset of epithelial cells after fin amputation, where it is required to establish and maintain a polarized basal epithelial cell layer. These events facilitate expression of the morphogenetic factors shha and lef1, basolateral positioning of phosphorylated Igf1r, patterning of new osteoblasts, and regeneration of bone. By contrast, lamb1a function is dispensable for juvenile body growth, homeostatic adult tissue maintenance, repair of split fins, or renewal of genetically ablated osteoblasts. fgf20a mutations or transgenic Fgf receptor inhibition disrupt lamb1a expression, linking a central growth factor to epithelial maturation during regeneration. Our findings reveal transient induction of lamb1a in epithelial cells as a key, growth factor-guided step in formation of a signaling-competent regeneration epidermis.

Original languageEnglish (US)
Article numbere1005437
JournalPLoS genetics
Volume11
Issue number8
DOIs
StatePublished - Aug 1 2015

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Fingerprint Dive into the research topics of 'Transient laminin beta 1a Induction Defines the Wound Epidermis during Zebrafish Fin Regeneration'. Together they form a unique fingerprint.

Cite this