TY - JOUR
T1 - Trigeminal and sphenopalatine ganglion stimulation for intractable craniofacial pain—case series and literature review
AU - William, Arsani
AU - Azad, Tej Deepak
AU - Brecher, Eliezer
AU - Cherry, Taissa
AU - Bernstein, Ivan
AU - Bruce, Diana M.
AU - Rohrer, Stacey
AU - Smith, Zachary
AU - William, Mary
AU - Sabelman, Eric
AU - Heit, Gary
AU - Pezeshkian, Patrick
AU - Sedrak, Mark
N1 - Publisher Copyright:
© 2016, Springer-Verlag Wien.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - Introduction: Facial pain is often debilitating and can be characterized by a sharp, stabbing, burning, aching, and dysesthetic sensation. Specifically, trigeminal neuropathic pain (TNP), anesthesia dolorosa, and persistent idiopathic facial pain (PIFP) are difficult diseases to treat, can be quite debilitating and an effective, enduring treatment remains elusive. Methods: We retrospectively reviewed our early experience with stimulation involving the trigeminal and sphenopalatine ganglion stimulation for TNP, anesthesia dolorosa, and PIFP between 2010–2014 to assess the feasibility of implanting at these ganglionic sites. Seven patients received either trigeminal and/or sphenopalatine ganglion stimulation with or without peripheral nerve stimulation, having failed multiple alternative modalities of treatment. The treatments were tailored on the physical location of pain to ensure regional coverage with the stimulation. Results: Fluoroscopy or frameless stereotaxy was utilized to place the sphenopalatine and/or trigeminal ganglion stimulator. All patients were initially trialed before implantation. Trial leads implanted in the pterygopalatine fossa near the sphenopalatine ganglion were implanted via transpterygoid (lateral-medial, infrazygomatic) approach. Trial leads were implanted in the trigeminal ganglion via percutaneous Hartel approach, all of which resulted in masseter contraction. Patients who developed clinically significant pain improvement underwent implantation. The trigeminal ganglion stimulation permanent implants involved placing a grid electrode over Meckel’s cave via subtemporal craniotomy, which offered a greater ability to stimulate subdivisions of the trigeminal nerve, without muscular (V3) side effects. Two of the seven overall patients did not respond well to the trial and were not implanted. Five patients reported pain relief with up to 24-month follow-up. Several of the sphenopalatine ganglion stimulation patients had pain relief without any paresthesias. There were no electrode migrations or post-surgical complications. Conclusions: Refractory facial pain may respond positively to ganglionic forms of stimulation. It appears safe and durable to implant electrodes in the pterygopalatine fossa via a lateral transpterygoid approach. Also, implantation of an electrode grid overlying Meckel’s cave appears to be a feasible alternative to the Hartel approach. Further investigation is needed to evaluate the usefulness of these approaches for various facial pain conditions.
AB - Introduction: Facial pain is often debilitating and can be characterized by a sharp, stabbing, burning, aching, and dysesthetic sensation. Specifically, trigeminal neuropathic pain (TNP), anesthesia dolorosa, and persistent idiopathic facial pain (PIFP) are difficult diseases to treat, can be quite debilitating and an effective, enduring treatment remains elusive. Methods: We retrospectively reviewed our early experience with stimulation involving the trigeminal and sphenopalatine ganglion stimulation for TNP, anesthesia dolorosa, and PIFP between 2010–2014 to assess the feasibility of implanting at these ganglionic sites. Seven patients received either trigeminal and/or sphenopalatine ganglion stimulation with or without peripheral nerve stimulation, having failed multiple alternative modalities of treatment. The treatments were tailored on the physical location of pain to ensure regional coverage with the stimulation. Results: Fluoroscopy or frameless stereotaxy was utilized to place the sphenopalatine and/or trigeminal ganglion stimulator. All patients were initially trialed before implantation. Trial leads implanted in the pterygopalatine fossa near the sphenopalatine ganglion were implanted via transpterygoid (lateral-medial, infrazygomatic) approach. Trial leads were implanted in the trigeminal ganglion via percutaneous Hartel approach, all of which resulted in masseter contraction. Patients who developed clinically significant pain improvement underwent implantation. The trigeminal ganglion stimulation permanent implants involved placing a grid electrode over Meckel’s cave via subtemporal craniotomy, which offered a greater ability to stimulate subdivisions of the trigeminal nerve, without muscular (V3) side effects. Two of the seven overall patients did not respond well to the trial and were not implanted. Five patients reported pain relief with up to 24-month follow-up. Several of the sphenopalatine ganglion stimulation patients had pain relief without any paresthesias. There were no electrode migrations or post-surgical complications. Conclusions: Refractory facial pain may respond positively to ganglionic forms of stimulation. It appears safe and durable to implant electrodes in the pterygopalatine fossa via a lateral transpterygoid approach. Also, implantation of an electrode grid overlying Meckel’s cave appears to be a feasible alternative to the Hartel approach. Further investigation is needed to evaluate the usefulness of these approaches for various facial pain conditions.
KW - Anesthesia dolorosa
KW - Persistent idiopathic facial pain
KW - Sphenopalatine ganglion
KW - Trigeminal neuralgia
UR - http://www.scopus.com/inward/record.url?scp=84958112999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958112999&partnerID=8YFLogxK
U2 - 10.1007/s00701-015-2695-y
DO - 10.1007/s00701-015-2695-y
M3 - Article
C2 - 26743912
AN - SCOPUS:84958112999
SN - 0001-6268
VL - 158
SP - 513
EP - 520
JO - Acta Neurochirurgica
JF - Acta Neurochirurgica
IS - 3
ER -